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Abstract-The statistical aspects of the failure of large 3-D unidirectional fiber reinforced com­
posites are studied numerically and analytically. A 3-D lattice Green's function model is used to
calculate the stress field, damage evolution, and failure in composites under "Local Load Sharing"
(LLS) conditions in which the stress from broken fibers is transferred predominantly to the nearby
unbroken fibers. Failure by local accumulation of a critical amount of damage, and the associated
decrease in ultimate strength with increasing composite size, is explicitly demonstrated. Weakest­
link statistics are then employed to investigate size effects and reliability. An intrinsic "link" in LLS
is found which has the same Gaussian distribution function for strength as a bundle in Global Load
Sharing (GLS) (no local stress concentrations) of the same size. The size of the link is found to be
comparable to the critical cluster of fiber damage observed in the simulations. Then, using known
results for the GLS probability distribution function, analytic asymptotic results for the strength
and reliability of large composites in LLS are derived. The strength distribution shows excellent
agreement with the Monte Carlo simulation results for both the median strength and high reliability
tail of the distribution. The implications of these results on the expected strength and reliability of
moderate-size composites components is discussed, with applications to a Ti-MMC and a SiC/SiC
CMC. Finally, the application of these results to modeling ofcomposite failure by the Finite Element
Method is presented. © 1997 Elsevier Science Ltd.

L INTRODUCTION

The deformation and failure processes in 3-D unidirectional fiber reinforced composites
are complex in nature, but involve a series of relatively well understood events, the details
of which depend on the nature of the matrix. In brittle matrix composites such as ceramics,
roughly equally spaced matrix cracks perpendicular to the fiber direction are usually the
first non-linear event. In metal matrix composites, the matrix will plastically yield prior to
failure. In polymer matrix composites the relatively low modulus of the matrix will exhibit
a linear elastic behavior, but nearly all of the load is carried by the fibers. Thus, in all cases,
as the load is increased beyond the matrix "yield" threshold, the fibers carry essentially all
of the additional load. Further non-linear deformation then occurs as the fibers start
breaking due to the presence of randomly distributed flaws in the fibers. The stress from
the broken fibers is redistributed to the remaining fibers as determined by yield or
debond/slip zones at the fiber/matrix interface. Distributed fiber failure continues in a stable
manner until a cluster of fiber breaks reaches some critical size, triggering the catastrophic
failure of the composite. Although the composite eventually separates along a single plane
perpendicular to the direction of the fibers, the stochastic fiber failures usually occur at
random distances away from the catastrophic plane, resulting in fiber pull-out. The dis­
tributed fiber breaks prior to failure tend to diffuse the stress concentrations at the perimeter
of the clusters of fiber damage and so inhibit catastrophic failure. The extent and magnitude
of the stress concentration around growing clusters of fiber breaks depends, however, on
the fiber/matrix interface deformation and the statistics of fiber failure.

Several approaches have been taken previously to predict the tensile strength of
unidirectional composites. These range from two and three dimensional Finite Element
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Models (FEM) (Goree and Gross, 1980; Hikami and Chou, 1990; Goda and Phoenix,
1994), to shear-lag type model. Chou (1992) gives an extensive review of the various shear­
lag models. Typically the finite element analyses tend to ignore the spatial variations of
fiber break locations (fiber 'pull-out') and are limited to the analysis of small numbers of
fibers. The inability to account for fiber pull-out leads to overestimates of the stress
concentration at the crack tip and in turn underestimates composite strength. The shear­
lag models have been quite popular because they allow for most of the physics of the
problem to be retained and for the possibility of including the stochastic aspects of failure,
while keeping the problem tractable. Previous Monte Carlo simulation techniques based
on interpretation of the shear-lag model and constant interface shear stress assumptions
(Curtin, 1993; Ibnabdeljalil, 1994; Ibnabdeljalil and Phoenix, 1995) and the analytic stoch­
astic models (Thouless and Evans, 1988; Sutcu, 1989; Schwietert and Steif, 1990, 1991 ;
Curtin, 1991; Phoenix, 1993; Neumeister, 1993; Ibnabdeljalil and Phoenix, 1995) for
ceramic and metal matrix composites have been developed within the additional approxi­
mation of Global Load Sharing framework (GLS). GLS refers to the assumption that the
stress from a broken fiber is distributed globally across all remaining intact fibers in the
cross-section of the composite. The GLS model leads to the identification of key strength
and length scales in the failure process, and has been shown to give good predictions for
the strength of many ceramic matrix composites and Ti-metal matrix composites, but does
not appear to apply to AI-metal or polymeric matrix composites. Also, GLS gives a rather
idealized description of the stress transfer and should be considered an upper bound strength
because there are no local stress concentrations. In practice the stress from a broken fiber
is usually redistributed amongst a limited number of intact fibers, which makes some sort
of Local Load Sharing (LLS) a more appropriate assumption for the failure process.
Adopting the assumption of LLS results in higher stress concentrations due to broken
fibers. Consequently, composites under LLS have lower strength and strain to failure, a
distribution of strength that is much broader than for composites under GLS, a size
dependence of strength, and notch sensitivity.

Two recent developments in the shear-lag type model which account for Local Load
Sharing are the Break Influence Superposition Technique (BIS) (Sastry and Phoenix, 1993;
Beyerlein and Phoenix, 1996) which is an extension of Hedgepeth's model (1961) and
the more approximate formulation of the lattice Green's function technique adapted to
composite failure by Zhou and Curtin (1995). Both the BIS and the Green's function
technique are attractive for solving the composite failure problem since in both cases the
size of the numerical problem to be solved is proportional to only the number of fiber
breaks in the composite, in contrast to the FEM where the size of problem is the total
volume of the composite. Using these new shear-lag techniques, relatively large composites
can be analyzed numerically, up to several orders of magnitude larger than can be analyzed
by the Finite Element Method. We will see below that this is important under Local
Load Sharing because a weak-link type size scaling only sets in at larger composite sizes.
Furthermore, in the Green's function method the extent of the load sharing is a parameter
that can be chosen to obtain load sharing ranging from GLS to very LLS, where nearly all
of the stress from broken fibers is redistributed on the nearest fibers only. This technique
therefore provides a tool for studying the effects of the spatial range of load sharing on the
various aspects of failure of composites with different types of matrices and interfaces.

In this paper, composite strength and its size dependence are investigated for com­
posites with very local Load Sharing using a Monte Carlo simulation model based on the 3-D
lattice Green's function technique, fully described in Zhou and Curtin (1995). Computer
simulations are conducted on composite models on the scale slightly larger than a certain
characteristic length 6c and having up to 1600 parallel fibers arranged in a 3-D square array.
We find that as the applied load on a composite is increased, clusters of damaged fibers
form and grow until one of them reaches some critical cluster size and triggers the cata­
strophic failure of the composite. This weakest cluster of fiber breaks is then responsible
for the composite failure, and each individual composite will have a different critical cluster
and a different strength. To investigate failure of even larger composites, beyond the sizes
that can be studied even with this efficient technique, we use weak-link scaling. Specifically,
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we obtain the probability distribution functions for failure via simulation on moderate-size
composites, demonstrate that weak-link scaling holds even at these sizes, and then use
scaling techniques based on the weakest link approach, originally proposed by Giicer and
Gurland (1962), to extrapolate the results to larger size composites.

In the failure process, we notice that just prior to failure, a composite in LLS exhibits
a stress concentration around the perimeter of the critical cluster of fiber breaks that is
relatively constant over a finite range extending away from the cluster. So, at that point,
we can identify a small bundle within the composite which contains the critical cluster of
fiber breaks, and the perimeter of near constant stress around it. We call it a "link". We
postulate that the distribution function for the strength of such "link" is identical to the
Gaussian distribution function of a same size link under Global Load Sharing, because just
prior to failure, their stress states are identical. Another way to view this is that for a
composite with some sufficiently small number of fibers, the damage at failure creates
stresses in the remaining fibers that are essentially insensitive to the nature of the load
sharing. In other words, we postulate that for a small size composite, Local and Global
Load Sharing give identical results for the composite failure probability distribution. This
postulate is then demonstrated explicitly by identifying a specific composite size (n/ fibers
of length 15/) for which Local and Global Load sharing are equivalent. Recent analytic
results for the much simpler results for GLS can then be applied to LLS at this specific size.
Weak-link scaling to obtain failure probabilities for a large composite in LLS is then
performed analytically.

From this approach, we find that the LLS failure probability for composites follows a
Weibull distribution with specific, analytic forms for the composite characteristic strength
and composite Weibull modulus as a function of composite size. These powerful analytic
results are then applied to predict composite strength and reliability in several real composite
systems (a Ti-MMC and SiC/SiC CMC, for which LLS is expected to be applicable) and
good agreement with experimental results is obtained.

Various other models based on a chain-of-bundles (weakest-link) model and under
various load sharing rules have been proposed (Zweben, 1968; Scop and Argon, 1969;
Zweben and Rosen, 1970; Argon, 1972; Harlow and Phoenix, 1979, 1981 a,b; Smith 1982,
1983; Pitt and Phoenix, 1982. 1983; Phoenix and Smith, 1983; and Phoenix and Kuo,
1987; Duxbury and Leath, 1994). These models use very idealized load sharing rules where
the stress concentration factor due to a sequence of r adjacent breaks is assumed, rather
than elastically determined. Also, to keep the problem analytically tractable, the effects of
pull-out are not included in these models. These earlier LLS models can be categorized into
two broad techniques. (I) Recursion analysis of Harlow and Phoenix (1979, 198Ia,b), and
the more recent and powerful result of Duxbury and Leath (1994), which provides a
simple framework for calculating the probability distribution for strength, and is extremely
accurate. Even though these models only consider the simpler linear crack problem in one­
dimensional random systems, they are very useful in evaluating the accuracy of other
models, and in the case of Duxbury and Leath (1994), provide some useful size scalings.
(2) Asymptotic analysis developed by Smith (1982. 1983) make certain assumptions for the
lower tail of the probability distribution function for the strength of fibers, and obtain a
limiting Weibull distribution for the strength of the composite. The main weakness of that
model is that the accuracy of the resulting approximations cannot be evaluated directly. A
comparison of the various asymptotic techniques is given in Phoenix and Smith (1983).

The current model is essentially of the asymptotic type, but does not suffer from the
shortcomings of earlier models and the stringent assumptions needed to make those models
tractable. The current model assumes that in the chain of bundle model, the underlying
statistically independent and identically distributed unit is not a fiber element, as assumed
in the previous asymptotic models, but is a bundle containing n/ fibers of length 15/. Knowing
the size of the link then allows us to determine the size of the cluster of fiber breaks which
controls the strength of composite, related to the critical k*-failure concept proposed in the
idealized model of Smith (1982, 1983).

The remainder of this paper is organized as follows. In Section 2 we give the main
assumptions of the current model for composite failure, including the statistical fiber model
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and the key scaling parameters, and summarize the basic features of the discrete model
which is the basis for the Monte Carlo model. In Section 3 we demonstrate explicitly the
weak-link behavior through Monte Carlo simulation results. In Section 4 we adapt the
statistics of composites under GLS to those of a composite under LLS to predict the
strength of large size composites under LLS. We then apply our results to some specific
examples in Section 5, and discuss further implications and applications of our results.

2. MODEL FOR THE COMPOSITE TENSILE FAILURE

The model of the composite and the Monte Carlo simulation procedure used here are
identical to those of Zhou and Curtin (1995). Here we merely summarize the basic method
and describe a few new features. The reader is referred to Zhou and Curtin (1995) for a full
description of the model.

The model consists of a square array of n/ parallel fibers in a matrix, of radius rand
Young's modulus Ef . The boundary conditions are periodic in the plane perpendicular to
the fiber direction. The model assumes that the matrix has already reached its matrix
damage state, i.e., multiply-cracked, as in ceramic matrix composites, plastically yielded,
as in metal matrix composites, or very low modulus, as in polymer matrix composites. In
all cases the net effect is the same: the fibers carry all of the additional load applied to the
composite. Furthermore the fiber/matrix interface is assumed to be rather weak. The
interface shear stress r is then controlled by a debonded sliding interface, after debonding
during matrix cracking or fiber fracture, or by shear yielding of the matrix. For tractability,
r is assumed to be constant in sliding/yielding zone. A consequence of the constant r
assumption is that around any fiber break the axial fiber stress recovers linearly with
distance from the break, and attains the remote fiber stress (J at a "slip length" If = m/2r.
Note that in a composite with some fiber breaks, (J is the stress in an intact (not broken
and not slipping) fiber, which is always larger than the applied composite stress because of
stress transfer from the broken fibers in the vicinity. Fiber breaks occur from pre-existing
flaws randomly distributed along the fiber length. The average number of flaws in a fiber
length L with strength less than or equal to stress (J is given by

L ((J)p.X«(J, L) = L
o

(To ' (I)

which is the usual Weibull model for single fiber strength. (To is the characteristic (0.632
probability) strength of a fiber oflength Lo in a tension test, and p > 0 is the Weibull shape
parameter describing the variability in strength.

In the failure process it is convenient to retain the normalizing scales for length and
strength of the previous GLS model (Curtin, 1991), known as the characteristic length be
and stress (Tn respectively, defined by

(
(Torlblp)p (1'+ I)

and b = --( r (2)

Physically, be is twice the slip length around a fiber break that is required to attain the
characteristic stress (Tn and so satisfies the relationship be = mcfr. Simultaneously, (Te is the
characteristic strength of a fiber of length bn i.e. ff«(T" be) = I. In the remainder of this
work all stresses are normalized with respect to the characteristic stress (T"

The composite described above is partitioned into a regular array of N, x N) x N z fiber
elements, each of length (5 (see Fig. I). The length (5 is the longitudinal discretization length
in the simulation model and must satisfy (5 « be' Random strengths sampled from a Weibull
distribution at length (5 are then assigned to every fiber element, with 0' = (Je«5/bJ III' as the
Weibull scale parameter at length (5. The partitioned composite is then modeled by a 3-D
lattice ofelastic springs with each fiber element represented by one tensile spring ofmodulus
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Fig. I. Partitioned composite showing the various length scales.

k,. Such 'fibers' are coupled to each other through orthogonal shear springs of shear
modulus k s' The tensile load bearing capacity of the matrix is essentially neglected at this
stage, which is physically plausible when fiber failure controls composite failure. The ratio
of shear to tensile modulus 0 2 = ks/k, is an adjustable parameter in the simulation model.
Varying 0 essentially changes the magnitude and extent of the load sharing: the limit 0 ~
ocorresponds to the most extreme case of LLS in this model and is identical to the load
sharing in the model of Hedgepeth and Van Dyke (1967) with a stress concentration of
1.14 on neighbors around a single broken fiber. 0 ~ 00 corresponds to GLS. As noted by
Zhou and Curtin (1995), 0 has not yet been directly related to the fiber, matrix, and
interface material properties and the damage state of the matrix. In practice 0 can be
determined as follows. Given the material properties of a particular system, the stress field
around a broken fiber can be found using, for instance, a finite element analysis which
includes matrix cracking and slipping or shear yield at the fiber/matrix interface as appro­
priate. 0 can then be chosen to match the stress concentration in the Green's function
model to that of the finite element analysis. The resulting 0 is then used in the Monte Carlo
simulation model to analyze much larger size composites with distributed damage. Though
we will not attempt to make the connection between 0 and material properties in this paper
explicitly, we are able to study the effects of varying 0, and hence the spatial range of the
load transfer, on the composite strength and reliability.

The Green's function technique of Zhou and Curtin (1995) determines the tensile stress
field in such a model composite for any arbitrary configuration of broken fibers, and for a
pre-selected load sharing rule (particular value of 0). A Green's function is basically a
response function Gi ,/ which relates the displacement at a point i due to a unit point force
applied at pointj through u, = Gi,jFj. For an elastic (linear) system, Green's functions for
any lattice structure are easily calculated. In the presence of broken springs in the lattice,
modified Green's functions can also be calculated, requiring inversion of the matrix Gi,j'
and the resulting stress distribution around the broken springs is then obtained directly.
The model also includes inelastic fiber sliding associated with an interface sliding resistance
r by treating sliding fiber elements as "perfectly" plastic spring elements.
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The algorithm for simulation of the tensile failure of the model composite using the
above model is as follows. (1) An average stress equal to the strength of the weakest fiber
element is applied to all elements. This causes the weakest element to break. (2) The stress
at that point is set to zero and the stresses along the broken fiber within the slip length of
the break are reduced to a stress proportional to the distance from the broken element (i.e.,
in the slip zone of a broken fiber the stress is given by a = 2rz/r). (3) The stresses in all the
other elements are calculated using the Green's function technique. (4) Fiber elements for
which the stress exceeds their strength are identified, and we return to step (2). (5) If this is
a stable configuration (i.e., stress at every fiber element is less than its strength), the applied
stress per fiber is increased just enough to cause one additional element to break, and we
return to step (2). The simulation continues until all fibers in anyone layer of the composite
are either broken or slipping; the composite can then no longer support the applied load.
The applied stress just prior to failure is taken as the strength of the composite.

The simulation model of Zhou and Curtin (1995) has been improved significantly by
incorporating very efficient techniques for inverting the Green's function matrix Gi,j' We
use the Sherman-Morrison and Woodbury algorithms (Press et al., 1992) depending on the
size of the problem. The Sherman-Morrison is the faster of the two algorithms but the need
to store the entire matrix Gij is a practical limitation. The Woodbury algorithm is the block­
matrix version of the Sherman-Morrison and does not require the storage of the entire
matrix Gij.

3. MONTE-CARLO SIMULATION RESULTS

Zhou and Curtin (1995) demonstrated qualitatively that the failure ofcomposites under
LLS involves the formation ofclusters of fiber damage. For relatively large composites these
clusters seem to develop locally and independently of each other. Figures 2a,b show the
critical cross section of a composite containing 400 fibers at failure for the cases of p = 5
and p = 10, respectively. In both cases, several small clusters and a dominant cluster of
fiber damage are clearly identifiable. The "weakest" cluster is responsible for the final
demise of the composite. Due to the localized nature of the failure process, we expect that
as the number of fibers in the composite is increased, one can identify a region within a
composite that is statistically representative of the rest of the composite, and therefore can
be reviewed as a statistically independent entity. The composite is then only as strong as
the weakest of these regions, which will be termed the "critical cluster". We therefore expect
a weakest link behavior to emerge as the size of the composite is increased, one consequence
of which is a dependence of strength on size.

To clearly illustrate these effects, Monte Carlo simulations are conducted for increasing
numbers of fibers, nf = 100, 196,400, 576, 900, and a fixed length 26,. The length ~ is chosen
to be 6)20 to minimize discretization errors and we choose a typical Weibull modulus
p = 5. We also set the parameter Q = 0.001 which gives a very LLS, and is the most extreme
case obtainable in this model and so provides the largest difference from the previous GLS
model. Typically the probability distribution for the strength of a composite is based on
approximately 1000 simulations for each composite size.

Figure 3 shows the probability distribution ~,.(a) for the strength of a composite
plotted on Weibull coordinates In( -In[l- ~,.(a)]) vs In(a) where a is the composite
strength normalized with respect to a,., and subscript v refers to the volume of the composite.
As the number of fibers in the composite increases, the mean strength decreases, clearly
demonstrating the size effect. For example, increasing the size from nf = 100 to nr = 1600
causes, in this particular case, a 3.2% drop in median strength. Also, the distribution
function for strength becomes steeper suggesting an increase in reliability as nr increases.

Now if the composite does follow a weakest link behavior, we can relate the distribution
function for the strength at a composite of volume VI to that of a composite of volume V2

through the weak-link scaling relationship

~,,«(J) = 1- [1-~,,«(J)]'2i',, (J ~ O. (3)

Figure 4 shows attempts to weak-link scale distribution function for the strength of a
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dinates. The Weibull modulus is p = 5.

composite of size nj = 100 to nf = 900, and size nf = 400 to nf = 900. In both cases the
length of the composite is kept fixed at L = 2Dc • Figure 4 shows excellent agreement between
the actual distribution obtained from simulation of a composite of size nf = 900 and the
extrapolated results from a composite of size nj = 400, illustrating clearly the weak-link
behavior. The rather poor agreement between the extrapolated results from a composite of
size nf = 100 and actual simulation strength results for nj = 900 indicates that composite of
size nj = 100 is not large enough to account for correlations and boundary effects, and
therefore cannot be used to extrapolate to larger size composites. There is some minimum
size composite above which weak-link scaling applies and that minimum size varies with
the load sharing parameter nand Weibull modulus p. Though not shown here, the cases
p = 10 and p = 2 require a composite containing 600 fibers or more for weak-link scaling
to set in for n = 0.001. So for most Weibull moduli of practical interest (i.e., 2 ~ P ~ 10)
simulations should be conducted on composites nj ~ 600 and L ~ 2Dc to overcome cor­
relation and boundary effects.

4. WEAK LINK SCALING AND THE STRENGTH DISTRIBUTIONS OF LARGE
COMPOSITES

Having demonstrated the weakest link behavior explicitly by simulation, we will now
take a more fundamental approach in tackling the size effect problem. Here are the main
questions that need to be resolved. (l) Is there an underlying link size that is a fundamental
unit for understanding the observed failure statistics and size scaling? (2) Is this size related
to the critical clusters of fiber damage observed in the Monte Carlo simulations? (3) Are
the statistics of such a link related to the statistics of a similar link under GLS?

We conjecture that the latter point is true, as proposed by Curtin (1993). Essentially,
we believe that for a composite with a small number of fibers that the failure is insensitive
to the nature of the load transfer. Since composites sustain a finite amount of damage in
GLS, there are finite stress concentrations but they are distributed equally among all the
fibers in the composite. In a small composite in LLS, damage leads to the stress con­
centrations which are initially highly heterogeneous but, as damage evolves in a small
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composite, eventually becomes smeared over the entire (small) composite, leading to a
situation very similar to that of GLS. This is certainly not the case for larger composites
under LLS because isolated clusters with local stress concentrations certainly exist. To
make a precise connection between LLS and GLS would then also allow us, at least from
a mathematical point of view, to take full advantage of the known asymptotic results for
Gaussian distribution of the GLS bundles and then to perform weak-link extrapolations
analytically to obtain analytic predictions of the composite failure probability distribution.

The address these issues within a weakest link view point, the composite is modeled as
a chain of statistically independent and identically distributed (i.i.d) links, the size and
characteristics ofwhich we wish to identify. We postulate that there does exist some intrinsic
link, of length 1>, and containing n, fibers in its cross-section, which controls failure of much
larger composites. The link sizes 1>(, n, will certainly depend on the extent of the load sharing,
the statistically strength of the fibers, and the fiber/matrix interface properties. A large
composite (length L and cross-section of nr) is then considered to consist of mn of such
links, where m = L/1>/ and n = nr/n,. The total number of links mn can range from 102 to
1010 in a practical size composite.

Next, let '§",(<J) be the probability distribution function for the strength of a link of
size ni' 1>/. Also, let :Yt'rn,,,(<J) be the distribution function for a composite of mn such links.
:Yt'rn,,,(<J) has been obtained through the Monte Carlo simulations at various physical
volumes mn(j/n, as shown. for example, in Fig. 3. According to the weakest link rule for
statistically i.i.d links. :Yt'rn,,,(<J) is related to '§",(<J) by

(4)

The distribution function '§",(<J) for the strength of a link and the link sizes n(, (j{ are,
a priori, not known but if such a link exists, it must satisfy eqn (4) for all the Jfrn,,,(<J) which
have been obtained through simulation.

We postulate that '§",(<J) is identical to the distribution for strength of the same size
link in GLS. In GLS, the fundamental length of a link is 15/ = O.41>co as found by Phoenix et
al. (1995), and is expected to be the same for LLS because the link length in the longitudinal
direction should be independent of the transverse load sharing (aside from its connection
to the characteristic length (jc). We then search for the number of fibers n/ in the link so as
to match the GLS distribution function <l>nt<a"), which is a Gaussian distribution (Phoenix
and Raj (1992)). That is, eqn (4) becomes

(5)

where <I>",(<J) is the Standard Gaussian distribution of the GLS bundle,

(6)

fl:' and y~,* are the normalized mean strength and standard deviation for the strength of a
GLS bundle oflength 15" respectively. Accurate approximations to fl:' and Y:'* are presented
in the Appendix. The approximation to Jfrn.n(<J) given by eqn (5) will be referred to as the
weak-linked Gaussian distribution.

To solve eqn (5) and determine the number of fibers in the link n/ we now use the
concept of "reverse" weak-link scaling. That is, we write eqn (5) with <I>",(<J) on the left­
hand side

(7)

The composite distribution function Jfrn.,,(<J) has already been determined through Monte
Carlo simulations for various composite sizes nf at L = 2(jn and <l>n,(<J) can be expressed
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analytically through eqn (6). The problem then reduces to solving eqn (7) for n" with
n = nrln, and m = L/15, (where L is the length of the simulated composite; here L = 215" so
m = 5) by graphically matching the right-hand side of eqn (7) to <1>n,(a). Note that eqn (7)
is not explicit in that n, appears on both sides of the equation, and a solution is not assumed;
rather, its existence verifies our underlying non-trivial postulate relating LLS to GLS.

As an illustration, we study the case n = 0.001, and three Weibull moduli p = 2, 5 and
10. The simulation results for p = 5 and nf = 576 and 900 are reversed weak-link scaled
according to eqn (7), and we vary n, until eqn (7) is satisfied as closely as possible (Fig. 5a).
For p = 5 this procedure leads to an "intrinsic" link ofn! = 54 (and 151 = 0.415 c)' For p = 10
and 2, the matching procedure leads to the size of the "intrinsic" link as n, = 21 and
nt = 165, respectively, with 15t = 0.415c (see Figs 5b,c).

(a) F-;::=========;-----j .900
Simulation Parameters:
p=5.0. 0....-0.001. L=Ui.. 0,=576. 900

o

-I
* -
*~

~-
* c::t -2
6
'-'

-3

-4

Global Load Sharing Parameters:

n,=54. ~= 0.7430399. Y~"=0.02819
.500

.100

.010

.001

.0001

.00001

0.64 0.66 0.68

cr
0.70 0.72

(b) F-;::=========;-----~ .900

.001

o

-1
* -*.'?3-­* c
::t -2

~
-3

-4

Simulation Parameters:
p=10.0. 0=0.001

L=21l" n,=576, 900 and L=4Il" 0,=400

Global Load Sharing Paramelers:

n,=21. ~= 0.8172141. y~"=0.032S

.500 %
'9
@

.100 ~
rLJ
.:.:.:

.010 ~....
~.:.:
~
~.0001

.00001

0.82

cr
Fig. 5. Reverse weak link scaling of the strength of composites plotted on normal probability
coordinates. Also shown are the analytic Gaussian distribution for the same link under GLS (solid
lines). (a) Data for nr = 576,900 and L = 2b,. for p = 5, reverse weak linked to a link size n/ = 54
and b, = O.4b,.. (b) Data nr = 400, 900 and L = 2", for p = 10, reverse weak linked to a link size
n/ = 21 and "I = 0.4b,.. (c) Data n/ = 400 and L = 2",. for p = 2, reverse weak linked to a link size

n, = 165 and b/ = O.4b,. (Continued opposite.)
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We expect the link size n, to be a function of the load sharing parameter n, such that
n, = f(p, n). It is beyond the scope of this work to map the full parameter space of n, in
terms of p and n. However, for the particular case of n = 0.001 studied here, we find it
useful to devise an empirical relationship between nj and p from the simulations results,

(8)

It is not understood at this point how the fit parameters are connected to n, but the above
relationship allows us to determined nj for any 2 :( P :( 10, without resorting to the lengthy
simulations.

Having established a relationship between LLS and GLS at a particular size nt, we
note that there is evidence that the mathematically-derived link size corresponds in fact to
a region containing the critical cluster of fiber damage at the onset of catastrophic failure
and a perimeter of nearly constant stress around it. Figures 2a,b illustrate that connection,
at least qualitatively, where counting the number of fibers in the failure plane and in the
boxed region (the box contains clustered broken and slipping fibers, and highly stressed
fibers around that cluster). For p = 5 and p = 10, the box contains 60 and 25 fibers,
respectively, which are quite comparable to our intrinsic link sizes 54 and 21, respectively,
obtained above. A more detailed study is needed, though, to prove the existence of a precise
connection between n, and the critical cluster, and should start with a careful definition of
the "critical cluster" of fiber damage. This issue will be specifically addressed in our future
work.

To reiterate our main result, we find that the strength distributions for large composites
under LLS can be described by considering the composite to consist of a collection of size
n,' (j, links which have a strength distribution identical to that of n,' (jt links under GLS;
and analytic results for this <Dn/O') exist (see the Appendix). We have thus demonstrated
unequivocally that it is possible to reduce the failure of a composite in LLS to that of a
characteristic link in GLS. Below we discuss how to reap the benefits of all the asymptotic
results developed for the GLS problem. The above results do not mean that one can, for
example, simulate a composite of size n, = 54 and (j, = 0.4(j, in the case of p = 5, to obtain
the statistics of the link. As pointed out in Section 3, simulated composites smaller than
n, = 400 do not give proper scaling for p = 5. Rather, simulations need to be carried out
at larger sizes (say L;:, 2(jc and n,;:' 400 for p = 5) to minimize the correlations and
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boundary effects and then analyzed as above to find the appropriate (and rather smaller)
link size.

We are most interested in the distribution function:lfm.n(O") for composites much larger
than can presently be studied numerically, but comparable to real composite sizes. The
large number of links in a large size composite means that the behavior of :Ifm,n(O") will be
governed by the extreme lower tail (0"« 1) of the distribution function <1\(0"). We can thus
take full advantage of the known asymptotic results for the strength of classical bundles
from the theory of extremes. The distribution function :Ifm,n(O") can then be approximated
by a double exponential distribution (Smith and Phoenix, 1981 ; Smith, 1982). Phoenix and
Raj (1992) also proposed a Weibull approximation to :Ifm,n(O") that is more accurate than
the double exponential approximation, and is conservative with respect to the "Exact"
result ofeqn (5). Furthermore, from a practical view point, using the Weibull approximation
allows us to establish a direct connection between the fiber and composite Weibull
parameters, The Weibull approximation to :IfmAO") has the form

where the composite Weibull scale (j and shape pparameters are given by

(9)

_ bm,n
and p =-.

am,n
(10)

am.nand bm,n are in tum given by

t::,*
amn = ,

, J2Iog(m,n)

and

b = * ** [IOg(IOg(m. n)) + log(4n) - J21 ( . )Jm,n J1n, +Yn, og m n ,
J81og(m'n)

(II)

(12)

Recall that J1:' and Y~,* are the analytical mean and standard deviation for the strength of
the intrinsic link of size n,' (j" are defined in the Appendix, and are presented in Table 1 for

Table I. Global Load Sharing results for the mean
strength Jl: and standard deviation y:* for the intrinsic
link of siz~ n,' fJ" for various Weib~1l moduli p. The
appropriate size n, for each p is obtained from eqn (8),

an empirical fit to the simulation data

p

2.0
3.0
4.0
4.5
5.0
5.5
6,0
6.5
7.0
7,5
8.0
8.5
9.0
9.5

10.0

n,
eqn (8)

166
99
68
59
51
45
41
37
33
31
28
26
24
23
21

J1,~
eqn (A3)

0.68687
0.69961
0.72563
0.74149
0.74416
0.75161
0,75945
0.76763
0.77596
0,78318
0.79090
0.79788
0.80474
0.81062
0.81727

y**
eqn"(A6)

0,02307
0,02572
0.02781
0.02850
0.02934
0.02998
0.03028
0.03074
0.03138
0,03139
0,03192
0.03211
0.03240
0,03223
0.03265
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various Weibull moduli p. Also, recall that nand nt are related by the relationship n = nt/nt.

The asymptotic median strength of the composite is the value 0"* for which Yfm.n(0"*) = 1/2,
which is

0"* = bm,n +am,n log(log(2», (13)

The composite mean strength (j and standard deviation}' are also given in terms of i'f and
pby

(14)

where re·) stands for the Gamma function.
We now test the Weibull approximation in eqn (9) against the simulation results and

the weak-link Gaussian distribution in eqn (5) for the case n = 0.001. Figures 6a and 6b
show the scaled results for the case of p = 5 and nJ = 576, and 900, respectively. Figure 6c
shows the scaled results for the case of p = 10 and nl = 900. Both the weak-linked Gaussian
and the Weibull approximation give equally impressive agreement at the median strength
with the simulation results. As the number of fibers increases, the agreement at the median
is even better. In the lower tail of the distribution function, the Weibull approximation
gives the a more conservative estimate as the size of the composite is increased. This is
important since the lower tail of the distribution corresponds to a stress level of high
reliability.

Finally, we test the asymptotic median strength given by eqn (13) as a function of size
of the composite. Recall that the distribution function for the strength of a large chain of
links Yfm,n(O") is governed by the lower tail (or weakest link) of the distribution function
for a single link l1>n,(O"), since a large composite is only as strong as its weakest link. This
means that l1>n,(O") contains statistical information about composites larger than the link
itself, and this connection is explicit in eqn (5). To obtain the media strength at size mn, we
set Yfm,ne0"*) = 1/2 in eqn (5) and solve for 0"*. This leads to l1>n,(0"*) = 1- (1/2) I (mnl, and so
given mn one can read off the appropriate value of 0"* from the abscissa in Fig. 5. Figures
7a,b show the median strength obtained in this way versus composite size mn for p = 5, 10,
respectively, from both the actual individual Monte Carlo simulation results and the
analytic Weibull approximation of eqn (13), for different size composites. The agreement
is again excellent between analysis and simulation for composites containing up to 104

links, which is an order of magnitude larger than the size that can be simulated directly.
We have confidence that the prediction remains good for sizes m' n up to 108 links.

5. APPLICATIONS AND DISCUSSION

We first apply the current model to predict the strength of a unidirectional SCS-6 SiC
fiber/Ti-24AI-IINb composite fabricated via the powder-cloth method by MacKay et al.
(1994). The interfacial shear stress used in the calculation is 1" = 56 MPa (Wawner, 1988;
Brindley et al., 1992) and we assume Local Load Sharing (n = 0.001) for this case. Fiber
strength was based on extracted fibers from composite panels, and is modeled by a two­
parameter Weibull distribution with Weibull modulus p = 8.6. The fiber strength, based
on a gauge length 10 = 12.7 mm, is 0"0 = 4577 MPa and the fiber diameter is d = 142 /lm.
The average volume fraction of fibers is f = 0,26 ±0.028, and the matrix yield stress is
0"my ~ 546 MPa (Brindley et al., 1992). The constituent material properties are summarized
in the top half of Table 2. In calculating the Ultimate Tensile Strength (UTS) of a metal
matrix composite, it is necessary to add the tensile contribution of the yielding matrix, so
that
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(15)

where ()mF is the yield stress of the matrix material, (j is given by eqn (14) andfis the fiber
volume fraction. The stochastic nature of composite failure is mainly governed by the
statistical nature of fiber strength, so the standard deviation for the composite is taken as
the standard deviation for the fiber bundle y is given by eqn (14). Experimentally, a coupon
of length Lo = 25.4 mm, width w = 6.35 mm and thickness t = 1.3 mm was found to have
a mean ultimate tensile strength of 1251 ±93 MPa (MacKay et al., 1994). In our analysis,
the link size is b, = O.4bewhere be = 6.29 mm (given by eqn (2)), and n{ = 26 obtained from
eqn (8). The coupon thus has a total of mn = 53 statistically independent links. Equations
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(10)-(14) then predict that the ultimate tensile strength is 1338 ± 71 MPa. Using eqns (A3)
and (A6) in the Appendix with n{ set to nj, the GLS analysis, on the other hand, yields a
higher UTS of 1387 ±46 MPa. The discrepancy between the experimental results and the
LLS analysis is only 7% for the strength of the composite, compared with 11 % for the
GLS analysis (using eqns (A3) and (A6) in the Appendix, with n/ set to nr), and is partly
attributable to several factors: (1) approximating the fiber strength distribution with a two
parameter Weibull distribution, (2) the values of T and (Jmy used in the analysis are only
estimates, (3) the uncertainty of 2.8% in the volume fraction of fibers: choosing the lower­
end and upper-end estimates for f (i.e., f = 0.232 and f = 0.288, respectively) yield mean
ultimate tensile strengths of 1254 MPa and 1422 MPa, and finally, (4) the present analysis
does not take into account the effects of processing and/or handling induced damage which
is invariably present in real composites, as discussed by Duva et al. (1995). Including the
latter effects in the analysis, using an approach similar to that taken by Ibnabdeljalil and
Phoenix (1995), or Curtin and Zhou (1995) should lower the ultimate tensile strength and
increase the variability, moving in the right direction for a closer match between the
experimental results and analytic prediction. Though the effects of the various estimates
and approximations, apart from f, are not quantified specifically, their net effect on com­
posite strength is expected to be quite small (in the absence of extensive processing damage)
and, in all, the analytic prediction for strength is remarkably good. Note that the relatively
small difference between the LLS and GLS analysis for this particular composite system,
at the coupon size, is expected due to the relatively small number of fibers in the cross­
section. The difference between the two analyses is expected to grow rapidly as the size of
the composite is increased. To illustrate the predicted size effect and its importance to
composite performance, we increase the size of the composite from a coupon (24.5
mm x 6.35 mm x 1.3 mm) to a "panel" (1000 mm x 1000 mm x 1.3 mm), which contains
326,398 links. Such an increase in size results in an 8.3% decrease in the LLS predicted
mean strength (UTS = 1235 MPa) but an 82% decrease in the standard deviation (y = 39
MPa).

Next we apply the model to predict the strength of SiC-SiC fiber reinforced composite
coupons and components fabricated by the CVI method. The Nicalon SiC fibers have a
diameter d = 16 !tm and Weibull modulus p = 4.5. The sliding resistance is r = 100 MPa
and the in situ fiber characteristic strength is (Jc = 1.5 GPa (Evans and Zok, 1994), giving a
characteristic length be = 120 !tm. The fiber volume fraction used isf = 0.2. The constituent
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Fig. 7. Median strength vs composite size mn obtained from both the Weibull approximation and
the actual individual Monte Carlo simulation results. (a) p = 5, n, = 54, and (b) p = 10, n, = 21.

Table 2. Constituent material properties and composite ultimate tensile strength for SCS-6 SiC fiber(Ti-24AI­
IINb matrix and SiC-SiC composites.

Constituent material properties

Interface stress r (MPa)
Fiber diameter d (Jlm)
Fiber strength 110 (MPa) based on 10
Fiber Gauge length 10 (mm)
Fiber Weibull Modulus p
Fiber Characteristic Stress 11, (GPa)
Fiber Characteristic length (), (mm)
Fiber Volume fractionf
Matrix yield strength 11m , (MPa)

Composite Tensile Strength
Measured (MPa)
Predicted (eqns (10)-(14» (MPa)

SCS-6 SiC fiber/Ti-24AI-IINb
matrix

56
142

4577
12.7
8.6
4.97
6.29
0.26±0.028

546

Coupon
1251 ±93
1338±71

SiC-SiC
composite

100
16

4.5
1.50
0.12
0.2

Coupon
157
182 ± 11
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material properties are summarized in the top half of Table 2. In our LLS analysis, we use
a link size b/ = O.4b" and n/ = 59 obtained from eqn 8. A coupon of size 24.5 mm x 6.35
mm x 1.3 mm then has a total of 3.6 x 105 statistically independent links. Equations (10)­
(14) then predict that the UTS is 182± 11 MPa, whereas the GLS (using eqns (A3) and
(A6) in the Appendix, with n/ set to nr) applied to the composite yields a UTS of 212 ± 2
MPa. The experimentally measured UTS is 157 MPA, so the discrepancy between the
experimental and predicted UTS from LLS and GLS analyses are 16% and 35%, respec­
tively. The LLS model fairs much better at predicting the strength of the SiC-SiC composites
than the GLS model. The discrepancy between the LLS and experimental results may be
due to the various estimates for the mechanical properties of the constituent materials and
fiber volume fraction, but further investigation is needed. To illustrate the predicted size
effects on the strength of SiC-SiC composites, we increase the size of the composite from a
coupon (24.5 mm x 6.35 mm x 1.3 mm) to a "panel" (1000 mm x 1000 mm x 1.3 mm),
which contains 1.1 x 109 links. Such an increase in size results in a further 7% decrease in
the mean strength (UTS = 170 MPa) and a 32% decrease in the standard deviation (y = 8.4
MPa). Moreover, the larger composites tend to exhibit a more brittle failure behavior than
smaller composites, as evident from the shorter non-linear region in the stress-strain curve
shown in Fig. 8.

We also apply our model to predict the UTS of a SiC-SiC tubular component (Curtin
et al., 1995) that has a length L = 203.2 mm, inner and outer diameters f i = 12.7 mm and
f o = 15.85 mm, respectively. The 00 tow volume fraction used in the calculation is! = 0.16.
The total number of links in the composite is 1.63 x 107

• The LLS model predicts a UTS of
141 ±9 MPa whereas the GLS analysis (using eqns (A3) and (A6) in the Appendix, with n{
set to nf) applied to the full composite yields a UTS of 169 ± 0.26 MPa, or 20% higher
strength than the LLS prediction. Experimentally, only one tube was tested and the UTS
was found to be 139 MPA. Though limited, the experimental results do suggest that the
LLS model is better at predicting the strength of a moderate size SiC-SiC composite
component than the GLS model. It should be noted that using Q = 0.001 which is assumed,
rather than derived, gives a load sharing that is very likely more local than the actual load
sharing in the real composite.

A very useful application of the strength distribution we have obtained for statistically
independent links is in the modeling composite failure using the Finite Element Method
(FEM). In such models, the composite is treated as a homogeneous continuum, but
with finite elements containing all the micro-mechanical information through a non-linear
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Fig. 8. Dimensionless Stress-Strain curves, alfa,. vs sEr/a,., for a SiC-SiC fiber reinforced composite,
for two different sizes: coupon (24.5 mm x 6.35 mm x 1.3 mm). panel (100 mm x 1000 mm x 1.3

mm) (fiber bundle contribution only).
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constitutive model based on the GLS theory for the deformation. Exact and approximate
expressions for the stress-strain behavior of GLS bundles can be found in the literature
(Hui et al., 1995; Sutcu, 1989; Curtin, 1991; Neumeister, 1993; Phoenix, 1993). The finite
elements are generally of different sizes as determined in the initial mesh distribution.
However, the present results demand that the minimum element size correspond to several
hundred fibers and a physical length ~ 2bc because composites smaller than such a size do
not give proper scaling since they are not truly statistically independent. Care must be taken
to make sure that the elements in the finite element mesh are large enough to realize this
statistical independence. Having properly "meshed" the composite, the weak-link scaling
approach is then used to determine the proper strength of each element consistent with its
physical volume. Specifically, an element of nf fibers and length L consists of m •n links of
size n{' b, such that mnn, bJ = ntL. n, is determined from results such as those above for the
desired p and 0, that is nt(p, 0). Lastly, a random number x in the interval [0, 1] is selected
and the element is assigned the strength a satisfying:llfm.n(a) = x where:llfm.n(a) is calculated
from eqn (9). This approach is quite straight forward but guarantees proper handling of
the statistics in assigning strengths to the finite elements and only uses the mechanical
properties of the constituent materials as input parameters.

In future work, we will study more carefully the critical clusters which cause failure
and the composite notch sensitivity. Specifically, we will determine how an initial cluster of
fiber damage competes with the critical cluster formed on loading from the existing fiber
flaw population (dictated by p), in causing the final collapse of the composite. The initial
damage clusters may be un-bridged (notched) or bridged; the bridging is accomplished by
assuming that the initial fiber breaks are randomly distributed a small distance away from
some reference plane. We can then study the composite failure strength and reliability as a
function of the size of this well defined initial cluster of fiber damage. Finally, note that
Figs 4a,b,c show that as p increases (less variability in the fibers) the critical cluster size
decreases, which means that a composite becomes much more vulnerable to local damage.
Another way to view this is that the composite under LLS is more notch sensitive for higher
fiber Weibull moduli.

In summary, we have demonstrated the weak-link nature of composite failure under
Local Load Sharing and described how to map the reliability of a composite under Local
Load Sharing to that of an intrinsic composite link under Global Load Sharing. The size
of the link was found to be a function of the load sharing and the Weibull modulus. The
statistical theory of extremes was then used to extrapolate the strength results for the link
to composites much larger than can be analyzed using the Monte Carlo simulation model.
The model was used to predict the strength of SiC/Ti-24Al-ll Nb composite coupons and
SiC-SiC composite coupons and components and showed generally good agreement with
experimental results. The strength and reliability of many other fiber reinforced composites
are approachable using this general technique if the appropriate load sharing parameter 0
can be determined (Ou and McMeeking, 1993; Nedele and Wisnom, 1994). Our future
effort will be directed toward obtaining the dependence of 0 on the underlying fiber, matrix,
and interface constitutive properties so that such investigations can be carried out. We will
also investigate the effects of both localized and random processing damage on the strength
and reliability of fiber reinforced composites.
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APPENDIX

Here we outline some of the most recent results regarding the strength and standard deviation of a charac­
teristic bundle in the GLS frame work.

An accurate approximation to the strength of a bundle can be obtained be taking the 3 term expansion of
Hui et al.'s (1995) exact solution

[
s*P+! S*2P+2J { (s*P+ I)}

jl*~s* 1--
2
-+1)24 exp -S*P-I I-A.-

8
- (AI)

where I) = (7p+ 12)j(2p+3) and }, = p/(p+ I). 5* is the fiber stress at the onset of composite collapse. An
approximation for .1* was given by Phoenix et al. (1995) which was shown to be very accurate for all values of the
Weibull modulus p,

.1* = [G) (:~:Drp+ II
We include the correction D..I to the asymptotic mean stress for small number of fibers in the link,

where 11., is called the mean shift. Phoenix and Raj (1992) give a simple estimate for 11"

(A2)

(A3)

(A4)

valid for p ;, 4.5. For smaller p's the mean shift is obtained from the more complex expression of Phoenix (1993),
but with the new estimate for 5*. The latter takes into account the first order effects of the exclusion zone around
fiber breaks; for p = 2, 3, and 4, it is given by D..,I = 0.9n,-2:3, 11" = 0.582n,- "3, and 11n, = 0.474nl- 2iJ, respectively.

We use the approximation to the standard deviation given by Phoenix and Raj (1992), but with the new
estimate for .1*.

.1* [I I I JI 2
y~ = ----= 12 + (; exp( - s*P+ I) - 4: exp( - 2s*P+ I)vn,

(AS)

Furthermore we include the correction to the standard deviation adapted to composites under GLS by Phoenix
et al. (1995), from the results of classical bundles (McCartney and Smith, 1983),

{ ( *)' }1:2y~* = y~ 1-0.317 ~~ p-23 e4IJP1n,-4 J . (A6)

The correction term is important, since the number of fibers in a link n, ~ 100 for most Weibull moduli of interest
(e.g., for p = 5 and n, = 54, the difference between y~ and y~* is 19%).


